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Year 2050: How could self-driving cars 
change urban systems?

•  Traffic accidents:
–  37,000 fatalities

–  41% deaths of young adults  
(ages 15-24)

–  94% of serious crashes  
caused by human error

•  Greenhouse gas emissions:
–  28% from transportation

•  Congestion:
–  6.9 billion hours wasted

–  3.1 billion gallons of fuel wasted 
(160$B)

•  Access to mobility: 
30% of population
–  20% youth or elderly

–  10% disabled (ages 18-64)

U.S. Energy Information Administration, 2017; U.S. Census Bureau, 2017.



Short answer:  
it is highly uncertain. 

100% self-driving cars: 
-40% to +100% energy

Transportation today:  
31% US energy consumption

Wadud, et al. 2016. TR-A; U.S. Energy Information Administration, 2017.

Impact on safety? Access? 
Congestion? Environment?

Year 2050: Current expert opinion  
on impact of AVs



Cloud	
Integrating autonomy

How can we gain understanding for integrating 
autonomy into complex systems?

meters
seconds

In particular: traffic congestion.



Long-standing challenges

•  Highly complex non-linear 
delayed dynamics 

•  Severe data limitations 

•  Human behavior modeling 

•  Large-scale, heterogeneity

•  Computational cost

•  Limited benchmarks 

•  Search possibilities

•  Simulation

•  Leverage mature 
models

•  Seek insights in 
small settings

•  Create some

(Policy optimization)

(Deep reinforcement learning)
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Deep reinforcement learning (RL) 
       is a decision making framework

Agent	

Environment	

action at

state st

reward rt
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Decisions in urban systems:
Vehicle accelerations

Tactical maneuvers

Transit schedules

Traffic lights

Land use

Parking

Tolling

…

AlphaGo (2016)

Go

TRPO (2015)

Locomotion

DQN (2015)

Video games

Recent successes of RL



Reinforcement learning
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Reinforcement learning
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Goal:  
learn policy                         
to maximize reward
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Reinforcement learning

Global rewards
•  average velocity
•  energy consumption
•  travel time

•  safety
•  comfort
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Deep reinforcement learning

Deep neural networks Example Deep RL algorithms
•  Deep Q Networks (DQN)
•  Policy gradient
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multi-layer perceptron (MLP)



Flow: full networks 
OpenStreetMaps 

Setting: ~2000 vehicles

Dynamics: 

•  cascaded nonlinear 
systems 

•  bottlenecks

•  multi-lane merges

•  toll plaza dynamics

 

 

Wu, et al. IEEE ITSC, 2017; Wu, et al. IEEE T-RO, in review.

San	Francisco	Downtown	

San	Francisco	Bay	Bridge	



On/off-rampSingle-lane

Grid networkBottleneck

Intersection

Straight highway
Signalized  
intersection

Multi-lane

Flow: traffic LEGO blocks 
Benchmarks for autonomy in transportation

Wu, et al. IEEE ITSC, 2017;  Wu, et al. IEEE T-RO, in review; Vinitsky, Wu, et al. CoRL, 2018.



Traffic jams
1955

Partial differential 
equations (PDE)

Setting: 22 human drivers

Instructions: drive at 19 mph.

No traffic lights, stop signs,  
lane changes.

900 papers on PDEs for traffic

Sugiyama, et al.

2008 2019



Video credits: NewScientist.com

Traffic jams
1955

Partial differential 
equations (PDE)

Setting: 22 human drivers

Instructions: drive at 19 mph.

No traffic lights, stop signs,  
lane changes.

Traffic jams still form.

 

900 papers on PDEs for traffic

Sugiyama, et al.

2008 2019



Setting: 1 AV, 21 human

Experiment
•  Goal: maximize average velocity
•  Observation: relative vel and headway
•  Action: acceleration
•  Policy: multi-layer perceptron (MLP)
•  Learning algorithm: policy gradient

Results
•  1 AV: +49% average velocity
•  Uniform flow at near-optimal velocity
•  Generalizes to out-of-distr. densities

Wu, et al. CoRL, 2017; Wu, et al. IEEE T-RO, 2018

AV offAV on

Single-lane traffic
1955

Wu, et al.

20192008

2017

Automated

Observed

Unobserved

Sugiyama, et al.



San Francisco Bay Bridge

Multi-lane merge

Toll plaza: 18 lanes

Wu, et al. IEEE T-RO, in review.



Setting: No AVs 720 veh/hr

Core problem: traffic bottleneck

Phenomenon: capacity drop

Setting: 10% AVs 1020 veh/hr

Vinitsky, Parvate, Kreidieh, Wu, Bayen. IEEE ITSC, 2018

Eugene Vinitsky

Dynamics: 
•  Four lanes à Two lanes à One
•  Cascaded nonlinear systems with right-of-way dynamics model, merge conflicts, 

and excessive, fluctuating inflow

40% improvement
Avoids capacity drop



       Flow: platform for RL + urban decisions
Control signals 
Longitudinal, lateral control

Traffic light control, ramp meters

Large-scale reinforcement learning 
Hierarchical policy
Multi-agent environments

Distributed simulation and sampling

Scenarios and networks 
Parameterized python scenario creation

A variety of open and closed networks
OSM network import

Libraries 
Rich models via SUMO/Aimsun

OpenAI gym interface 

Supports rllab and Rllib

Wu, et al. arXiv, 2019; Wu, et al. ITSC, 2017; Krajzewicz, et al. IJASM, 2012; Duan, et al. 2016. arXiv:1604.06778; Liang, et al. 2017. arXiv:1712.09381.

AWS Machine Learning 
Research Award

Environment

Traffic simulator
SUMO/Aimsun

Agent

Custom 
dynamics

Task designer

Markov Decision Process

Traffic network

Traffic dynamics

Vehicle types

Flow

state st action atreward rt

RL Library
Ray RLlib /rllab

flow-project.github.io	

Flow  is open-source. Check it out!
Team: flow-dev@googlegroups.com	

Docs: flow.readthedocs.io

Website: flow-project.github.io



    Tutorials
flow-project.github.io	

A. Kreidieh	



Towards: reliable decisions in urban systems

System 
verification

Urban decision 
support systems

Understanding 
adversarial driving

Scalable RL for 
networked systems

Controller design, 
traffic control for AVs

Behavior modeling 
& distribution shift



Integrating autonomy into urban systems

Small % of AVs greatly 
affect traffic dynamics,  
which in turn, affects all 
parts of the urban 
system.

+142%+30%+49%

+40%

+60%

Traffic LEGOs 

5-10% AVs

Cathy Wu 
cathywu@mit.edu

Flow: open source 
project to enable RL for 
traffic control

  

flow-project.github.io

Environment

Traffic simulator
SUMO/Aimsun

Agent

Custom 
dynamics

Task designer

Flow

state st action atreward rt

RL Library
Ray RLlib /rllab

Deep reinforcement 
learning provides 
understanding for 
integrating autonomy 
into urban systems.


